3D SLICER

GOVERNANCE AND POLICY

Ron Kikinis M.D.

Robert Greenes Distinguished Director of Biomedical Informatics, Dept. of Radiology, BWH
Professor of Medical Image Computing, FB 3, Uni Bremen
Professor of Radiology, Harvard Medical School

Founding Director, Surgical Planning Laboratory, Brigham and Women’s Hospital
Institutsleiter, Fraunhofer MEVIS
Principal Investigator, National Alliance for Medical Image Computing, and Neuroimage Analysis Center,
Collaboration Director, National Center for Image Guided Therapy
What is MIC

The extraction of information and knowledge from medical images using computational methods

- Technologies:
 - image segmentation
 - image registration
 - image-based physiological modeling
 - visualization

MIC = Medical Image Computing

https://en.wikipedia.org/wiki/Medical_image_computing

Increasing Importance of MIC

• More applications
 – Discovery, Diagnosis
 – Therapy monitoring

• More data and complexity
 – Gigabytes to terabytes
 – fMRI, molecular imaging, dMRI, 4DUS

• Translational infrastructure is needed

3D Slicer is software for MIC

- Free open source
 - no reciprocity requirements
 - you choose what to share
- Cross-platform
 - “One-click” installers for Windows, Mac and Linux
- Support and training
- Industry-strength engineering
- Extensible
 - Community “App store”
- Research software
 - not FDA approved

www.slicer.org
The Engines of Slicer

Volume rendering

Segmentation

Registration

Tractography

Dynamic analysis
Slicer Enables Reproducible Science

- Reproducible Science requires access to:
 - Software
 - Data
 - Parameters

- See the following:
Slicer Addresses Unmet Needs

- Stability and longevity
- Unique combination of high level features:
 - Usable by non-programmer
 - Free
 - Open source
 - Modular
 - Multi-platform
 - Customizable UI
 - Extensible
 - Business-friendly license (BSD)
Slicer Community

In a Nutshell, Slicer...

... has had 41,724 commits made by 127 contributors representing 1,437,273 lines of code

... is mostly written in C++ with an average number of source code commits

... has a well-established, mature codebase maintained by a large development team with stable Y.O.Y commits

... took an estimated 406 years of effort (COCOMO model) starting with its first commit in January, 2000 ending with its most recent commit 6 days ago

Downloads per day

3D Slicer mailing list messages posted 2000-2013
Slicer User Community

- Increasing use of Slicer is reflected in a large number of publications
- Volunteer contributions include participation in the mailing list and providing training materials
Slicer Developer Community

- Worldwide, distributed community
- Internet based technologies for development and communication
- Face-to-face meetings twice a year play a critical role
Examples of Clinical Research

- Radiation dose calculations
- Prostate procedures
- Liver procedures
- Breast cancer surgery guidance
- Diagnosis of Osteoarthritis Degeneration
- Quantitative assessment of COPD
- Clinical users drive creation of technology
- Diagnosis of Different Tumors in Lung Cancer
- Model-Guided Deep Brain Simulation
- Surgical navigation

©2015 Surgical Planning Laboratory, ARR

Slide courtesy of L. Cevidanes
Companies Use Slicer

Known commercial activities range from use “as is” to full blown product development:

- Xstrahl (small animal radiation product)
- mebio (radiology product, prostate guidance)
- SonoVol (ultrasound product) (R43CA192482...)
- Novartis (quantitative imaging clinical trials)
- New Frontier (navigation system)
- KUKA (surgical robotics)
- Siemens (diagnostic and interventional research)
- Canon (robotic interventions)
- GE (research and products)
- NDI (trackers for surgical navigation)
- Isomics (research, consulting)
- Kitware (research, consulting)
 - 10+ Slicer based projects in the past two years
 - 5 commercial products being launched
Business Model

- Enable science
- Apply for infrastructure funds

Underlying philosophy:
 - Open community-based approach
 - Free open source software with liberal license
Slicer Enables NIH Research

Hundreds of papers published using 3D Slicer

https://www.slicer.org/pages/Slicer_Community
Licensing model

License has to:

• Facilitate scientific exchange
• Enable commercial use
• Be acceptable to the institution

• Result: BSD open source license
 – you choose what to share
 – Key concept: “Not intended”
Long-Term Funding Strategy

Developed an “ecosystem” of funded efforts, both US and internationally

– Community based approach: no single point of failure

– Slicer is attractive as a platform for solution development:
 • Stability
 • Longevity
 • Supported
 • Maintained
Toolmakers Use Slicer

- SlicerCIP (Raul San Jose Estepar)-R01 HL116931, R01 HL116473
- SlicerCMF (Lucia Cevidanes, Martin Styner, Beatriz Panagua)-R01 DE024450
- SlicerProstate (Clare Tempany)-U01 CA151261, R01 CA111288, U24 CA180918, P41 EB015898
- SlicerRadiomics (Hugo Aerts)-U01 CA190234, U24 CA194354
- QIICR (Ron Kikinis, Andriy Fedorov)-U24 CA180918
- SlicerGyn – Pelvic floor research (John DeLancey, U Michigan) P50 HD044406, R01 HD038665, P30 AG024824
- OpenIGTLink (Junichi Tokuda)-R01 EB020667
- SlicerTractography (Lauren O’Donnell)-U01 CA199459
- SlicerIGT (Gabor Fichtinger, Andras Lasso, Tamas Ungi)-Ontario Govt. funded
- SlicerRT (Csaba Pinter, Gabor Fichtinger, Greg Sharp)-Ontario Govt. funded
- SlicerDBS (Pierre Jannin)-French Govt. funded
- IASEM (Bradley Lowecamp)-NLM intramural funding
- Bender (Stephen Aylward)-AFRL
- VesselView (Stephen Aylward)-R44 CA165621
- Slicer remote rendering (Al Johnson)-P41 EB015897
- Slicer (Ron Kikinis, Carl-Frederik Westin)-P41 EB015902

Green indicates clinical research focus
Maintenance

• A documented and principled software engineering methodology is key
• 3D Slicer has a core engineering team consisting of professional software engineers
• The Slicer community is actively participating in maintenance
Software Engineering Methodology

- Designed for a geographically distributed team
- Community driven activities
- More than 600 automatic tests
- Extensive documentation
- Extreme programming approach: publish early, publish often

Graphic courtesy of JC Fillion-Robin, Kitware
Core Engineering Activities

Ongoing need for maintenance to keep Slicer attractive to end-users and developers

Maintenance means:

• Review contributed code
• Porting to new OS releases
• Update software components such as ITK and VTK
• Investigate and resolve bug reports
• Maintain factory machines for nightly and stable builds across platforms and including extensions
• Monitor and troubleshoot extensions
• Maintain download servers and data bases
• Update wiki pages
• Write tutorials
• Answer emails
• ….
Available funding amounts to 4.5 FTE in 2015:

- NAC: 0.75 FTE (IC: EB)
- NCIGT: 0.25 FTE (IC: EB)
- QIICR: 0.5 FTE (IC: CA)
- Kitware: 1 FTE (multiple IC’s)
- Queen’s University: 2 FTE (mostly Canadian funding)

Funding for core engineering is spread across several projects and requires foresight in the grant application process.

P.S. Core engineering is different from application engineering.
Community Contributions

Participants outside the core engineering team

- **Developers**
 - Mailing lists,
 - weekly electronic meetings,
 - focus meetings on particular topics
 - twice a year weeklong in-person events

- **Users**
 - Mailing lists
 - Electronic training materials with sample data sets
 - Hands-on training events at conferences and on request
 - Individual support
Challenges

- Funding for core engineering
- Healthy balance between stability and innovation
- The academic culture and reward system: Reviewers often lack understanding of the role of engineering
Summary

3D Slicer is an effective tool for **translation** of MIC and informatics technologies into clinical research.

- NIH funded projects have enabled a huge range of scientific activities:
 - Major NIH-supported projects use 3D Slicer
 - Grassroots activities worldwide

- This is due to an effective operational model:
 - A strong leadership team
 - A robust software with no liabilities
 - A “community of the willing”
 - Developers who write, share, and maintain the software
 - Users who request features and report problems
Questions and comments?

http://www.slicer.org